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Comment on ‘‘Theory for the bending anisotropy of lipid membranes and tubule formation’’
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~Received 21 May 1999; published 22 December 2000!

We point out that the mechanism proposed by Chen@Phys. Rev. E59, 6192~1999!# for the stabilization of
tubular vesicles via bending anisotropy and edge tension cannot be applied to symmetric bilayers. Other
possible mechanisms are reviewed, with special emphasis on one involving a nematic order of the surfactant
polar heads.
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In a recent paper@1#, Chen has discussed a mechanism
the stabilization of tubular vesicles, based on the anisotr
of the bending rigidity due to the tilt of the lipid molecules
the Lb8 phase and on the presence of a spontaneous cu
ture. This model is applied to symmetric bilayers, on t
basis of an argument according to which the removal of
edge energy of a flat bilayer patch, obtained by forming
closed vesicle, can be represented by the introduction
spontaneous curvature. Explicitly, the integral

C5t R
S
ds~c11c2!, ~1!

whereS represents the vesicle surface, whose local princ
curvatures arec1 andc2 @2#, would give the edge energy o
the corresponding flat membrane with line tensiont.

This equivalence does not hold since the integralC is not
independent of the shape assumed by the vesicle. For
ample, it is easy to establish that

C5t
a14

Aa12
A2pS ~2!

for a tubular vesicle with areaS, closed by two spherica
caps, wherea is the ratio of the length of the cylindrical pa
to its radius. The sphere corresponds to the limit casea50.

The intrinsic lengthl 5k/t, wherek is the bending ri-
gidity, does not define a spontaneous curvature radius,
sets instead theminimal size of the vesicles~neglecting en-
tropic effects!. When the bilayer patch is smaller than'l , it
would rather remain flat with an open boundary than clo
up to form a vesicle. Nothing prevents, however, the form
tion of large, closed vesicles with an arbitrarily small curv
ture @3#. On the other hand, if a spontaneous curvature te
were intrinsically associated to the edge tension, experim
would show quite monodisperse distributions of vesi
sizes, specific to the molecular nature of the bilayer, whic
clearly not the case.

In a closed vesicle, the anisotropy of the bending rigid
does not allow one to define a characteristic length in
absence of a spontaneous curvature. Therefore it canno
plain by itself the stability of tubules with a well-define
radius independent of their area.

While the mechanism proposed by Chen cannot exp
the stability of tubules in symmetric bilayers, it can be r
evant for asymmetric ones. Tubules can be stabilized insym-
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metricbilayers with in-plane anisotropy if the anisotropy d
rections in the two monolayers are unlocked@4,5#. This can
take place, e.g., if a difference is allowed in the tilt directi
between the two monolayers of a Lb8 membrane@4# or in the
presence of in-plane nematic or paranematic order of
surfactant polar heads@5,6#, when the corresponding mono
layer directors are unlocked.

For definiteness, we reproduce here the reasoning of
@6#. Consider a curved monolayer made of surfactants
have elongated polar heads possessing an in-plane nem
orderQ5S(nn2 1

2 I). We assume that the nematic directorn
lies along one of the principal directions of curvature in t
tangent plane. The curvature tensor takes then the formK
5cinn1c'n'n' , with n' a unit vector orthogonal ton. The
most general form of the monolayer’s curvature energy co
patible with the symmetry is then

f ~ci ,c'!5
k

4
~ci1c'!21

k̄

2
cic'1a~ci1c'!

1
1

2
bS~ci2c'!. ~3!

For the sake of simplicity we have neglected the anisotro
of k and k̄.

We now consider a curvedbilayer made of two such
monolayers. We assume first that the directors of the
monolayers are orthogonal to each other. The free energF
of the bilayer is obtained by addingf (ci ,c') and f (2c' ,
2ci), and is given by

F5
k

2
~ci1c'!21k̄cic'1bS~ci2c'!. ~4!

An obvious uniform solution minimizing Eq.~4! is a tube.
Settingci50 andc'5c, we obtain

F tube5
k

2
c22bSc, ~5!

the minimum of which is obtained for

ctube5
bS

k
. ~6!
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It is easy to check that this configuration yields the mi
mum free energy also in the presence of a~not too large!
interaction tending to align the nematic order parameter
the two monolayers.

In order to estimate the parameterb we introduce the
quantitiesci

0 andc'
0 , representing the two spontaneous pr

cipal curvatures of themonolayerfor a perfect ordering of
the polar heads. By minimizing Eq.~3! with S51 one easily
obtains

ci
01c'

0 52
4a

2k1k̄
, ~7!
01390
-

of

-

ci
02c'

0 5
2b

k̄
. ~8!

One obtains thereforeb5 1
2 k̄(ci

02c'
0 ). Assuming k̄.2k,

the estimatesci
0.(100 Å)21, c'

0 .(120 Å)21, and S
.0.3, for dimeric surfactants with long chains, yield 1/ctube
.2000 Å, in agreement with the optically visible tubule
reported in Ref.@7#.

L.P. thanks Joel Stavans for useful comments and sug
tions.
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