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Comment on “Theory for the bending anisotropy of lipid membranes and tubule formation”
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We point out that the mechanism proposed by Clignys. Rev. E59, 6192(1999] for the stabilization of
tubular vesicles via bending anisotropy and edge tension cannot be applied to symmetric bilayers. Other
possible mechanisms are reviewed, with special emphasis on one involving a nematic order of the surfactant
polar heads.
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In a recent papdr], Chen has discussed a mechanism formetric bilayers with in-plane anisotropy if the anisotropy di-
the stabilization of tubular vesicles, based on the anisotropyections in the two monolayers are unlocKdg5]. This can
of the bending rigidity due to the tilt of the lipid molecules in take place, e.g., if a difference is allowed in the tilt direction
the Lg phase and on the presence of a spontaneous curvhetween the two monolayers of g Lmembrang4] or in the
ture. This model is applied to symmetric bilayers, on thepresence of in-plane nematic or paranematic order of the
basis of an argument according to which the removal of thesurfactant polar head$,6], when the corresponding mono-
edge energy of a flat bilayer patch, obtained by forming dayer directors are unlocked.
closed vesicle, can be represented by the introduction of a For definiteness, we reproduce here the reasoning of Ref.

spontaneous curvature. Explicitly, the integral [6]. Consider a curved monolayer made of surfactants that
have elongated polar heads possessing an in-plane nematic
C=r § do(cy+cy), 1) (_)rderQ—S(nn s1). We_ assume tha’g the nematic dlrec_;mor
s lies along one of the principal directions of curvature in the

_ ~ tangent plane. The curvature tensor takes then the #orm
where, represents the vesicle surface, whose local principak cjnn+c,n,n, , with n, a unit vector orthogonal to. The

curvatures are,; andc, [2], would give the edge energy of most general form of the monolayer’s curvature energy com-
the corresponding flat membrane with line tension patible with the symmetry is then

This equivalence does not hold since the integ@ra not
independent of the shape assumed by the vesicle. For ex- -

. . K K
ample, it is easy to establish that f(cj.c)= Z(CHJFCL)ZJF EC”CLJ,_ a(cj+c,)
a+4
- 1
C=r ,—a+2\/27TS (2 +§,BS(C||—CL). 3)

for a tubular vesicle with are&, closed by two spherical
caps, wherex is the ratio of the length of the cylindrical part

to its radius. The sphere corresponds to the limit case®. of x and «. . .
The intrinsic length/’ = «/7, where x is the bending ri- We now consider a curvebilayer made of two such

gidity, does not define a spontaneous curvature radius, pdponolayers. We assume first that the directors of the two
sets instead theninimal size of the vesiclegneglecting en- monolayers are orthogonal to each other. The free enérgy
tropic effects. When the bilayer patch is smaller than, it~ ©f the bilayer is obtained by addini{c;,c,) andf(—c,,
would rather remain flat with an open boundary than close™ )+ @nd is given by
up to form a vesicle. Nothing prevents, however, the forma-
tion of large, closed vesicles with an arbitrarily small curva-
ture [3]. On the other hand, if a spontaneous curvature term
were intrinsically associated to the edge tension, experiments
would show quite monodisperse distributions of vesiclean obvious uniform solution minimizing Eq4) is a tube.
sizes, specific to the molecular nature of the bilayer, which i%ettingc”=0 andc, =c, we obtain
clearly not the case.

In a closed vesicle, the anisotropy of the bending rigidity P
does not allow one to define a characteristic length in the Ftubezzcz—BSQ (5)
absence of a spontaneous curvature. Therefore it cannot ex-
plain by itself the stability of tubules with a well-defined

For the sake of simplicity we have neglected the anisotropy

F=%(C”‘FCL)Z‘F;CHCL+BS(C||—CL). 4

radius independent of their area. the minimum of which is obtained for

While the mechanism proposed by Chen cannot explain
the stability of tubules in symmetric bilayers, it can be rel- c ::3_5 6)
evant for asymmetric ones. Tubules can be stabilizesyim- tbe™ e
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It is easy to check that this configuration yields the mini- 28
mum free energy also in the presence ofnat too large cﬁ’—cfz:. ©)]
interaction tending to align the nematic order parameters of K
the two monolayers.

In order to estimate the parametgrwe introduce the ) — o0 o S
quantitiesc andc? , representing the two spontaneous prin-One obtains thgreforeg: 2 k(C| _(?L)' Assuming =2k,
cipal curvatures of thenonolayerfor a perfect ordering of the estimatesc)=(100 A)™%, c/=(120 A)™*, and S
the polar heads. By minimizing E¢B) with S=1 one easily =0.3, for dimeric surfactants with long chains, yieldt /e
obtains =2000 A, in agreement with the optically visible tubules

reported in Ref[7].
4o
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